3. Impact of Monetary Shocks in Forward-Looking Models

 -- Closed Economy

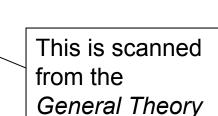
John B. Taylor, May 1, 2013

Start with Simple Demand for Money Equation

- Irving Fisher's Quantity Equation:
 - "Fisher's equation plays the same foundation-stone role in monetary theory that Einstein's E = mc² does in physics"
 - Friedman *Money Mischief* (p. 39)
- Keynes' liquidity preference idea

$$M = M_1 + M_2 = L_1(Y) + L_2(r),$$

- Many microeconomic theories:
 - Speculative, inventory, portfolio theory, cash in advance, money in utility function, overlapping generations models



California

MV = PY

- Medium of exchange, unit of account, store of value
- We will use "Cagan Model" (1st used for hyperinflations)

$$m_t - p_t = \lambda y_t - \beta i_t$$

m, p and y measured in logs (so semi log from)

Make 3 simplifying assumptions to get "economy-wide" model: Take y_t as given (=0), take $r_t = i_t - (E_t p_{t+1} - p_t)$ as given (=0), RE

$$m_t - p_t = -\beta (E_t p_{t+1} - p_t)$$

β>0

And rewrite it in generic form

$$y_t = \alpha E_t y_{t+1} + \delta u_t$$

$$u_t = \sum_{i=0}^{\infty} \theta_i \varepsilon_{t-i}$$

$$\alpha = \beta/(1 + \beta)$$
 and $\delta = 1/(1 + \beta)$

$$y_t = p_t$$
 and $u_t = m_t$

General stochastic process for shocks:

$$u_t = \sum_{i=0}^{\infty} \theta_i \varepsilon_{t-i}, \text{ where } \varepsilon_t \text{ is a serially uncorrelated random variable with zero mean.}$$

With alternative special cases: Purely temporary: $\theta_0 = 1$ and $\theta_i = 0$ for i > 0

Persistent: $\theta_i = \rho^i$

Anticipated: $\theta_0 = 0$, $\theta_1 = 1$, $\theta_i = 0$ for i > 1.

...and ways to do "thought experiments"

Method of undetermined coefficients

If you substitute this general form for the solution

$$y_t = \sum_{i=0}^{\infty} \gamma_i \varepsilon_{t-i}.$$

into the model and you will get the following <u>deterministic</u> difference equation (see slide 14 for the derivation)

$$\gamma_i = \alpha \gamma_{i+1} + \delta \theta_i$$
 $i = 0, 1, 2, \ldots$

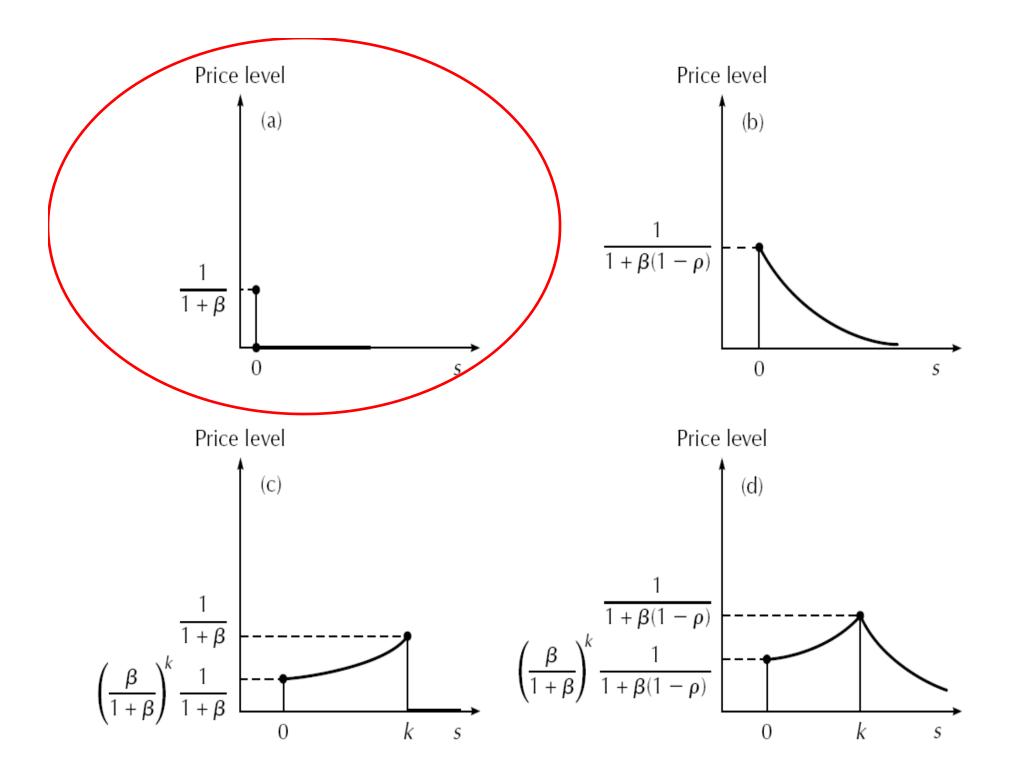
which then can be solved for different assumptions about the nature of the shocks, as shown on the next few slides... Temporary and Unanticipated $\theta_0 = 1$ and $\theta_i = 0$ for i > 0 $\gamma_0 = \alpha \gamma_1 + \delta$ $\gamma_1 = \alpha \gamma_2$ $\gamma_2 = \alpha \gamma_3$ $\gamma_s = \alpha \gamma_{s+1}$

Too few equations. To get another equation we rule out explosive solutions. Recall that $\alpha = (\beta/(1+\beta) < 1$, so that

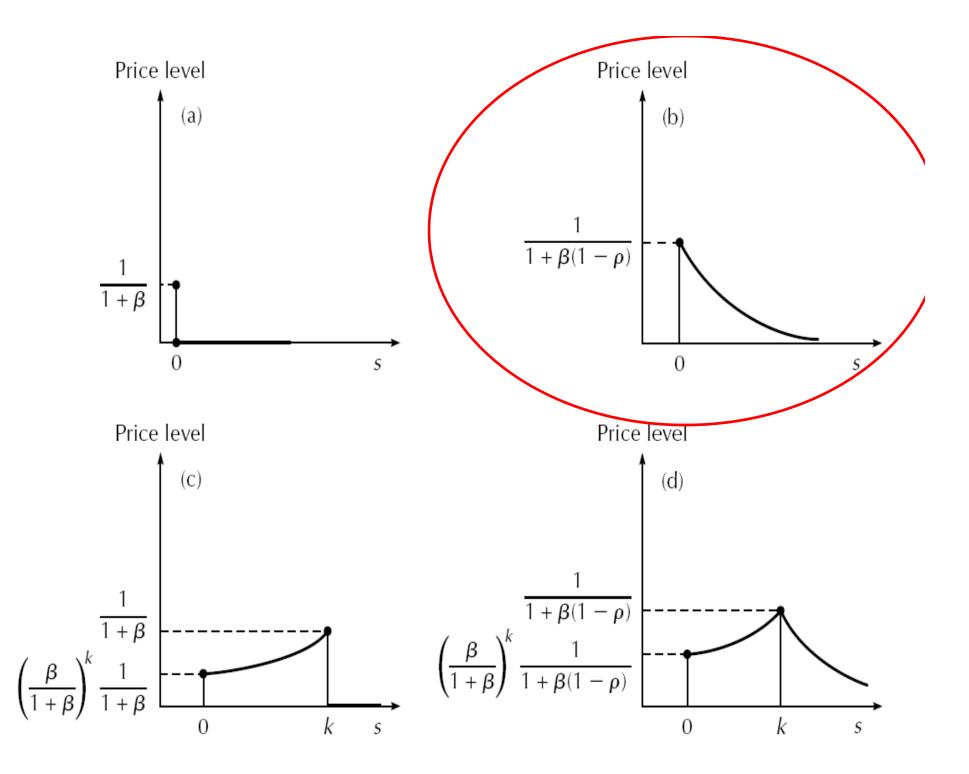
$$\gamma_{s+1} = (1/\alpha)\gamma_s$$
 for = 1, 2, 3,... is unstable.

To prevent explosion must have $\gamma_1 = 0$, and thus $\gamma_s = 0$ for all $s \ge 1$. and $\gamma_0 = \delta = (1/1 + \beta)$.

Thus $p_t = \frac{1}{1+\beta} \varepsilon_t$ is the "solution" for the price level when $m_t = \varepsilon_t$



Unanticipated, slow phase-out $\theta_i = \rho^i$ Set $\theta_i = \rho^i$ giving $\gamma_{i+1} = (1/\alpha)\gamma_i - \delta\rho'/\alpha$ $\gamma_i = \gamma_i^H + \gamma_i^P$ must have $\gamma_{i+1}^{H} = (1/\alpha)\gamma_{i}^{H} \Rightarrow \gamma_{0}^{H} = 0 \Rightarrow \gamma_{i}^{H} = 0$ for all i now guess a form for $\gamma_i^P = hb^i$ Then $b = \rho$ and $h\rho^{i+1} = (1/\alpha)h\rho^i - \delta\rho^i / \alpha$ so that $h = \delta/(1 - \alpha \rho)$ $\gamma_i = \frac{\delta \rho^i}{1 - \alpha \rho} = \frac{\frac{1}{1 + \beta} \rho^i}{1 - \frac{\beta}{1 + \beta} \rho} = \frac{\rho^i}{1 + \beta(1 - \rho)}$



Temporary but anticipated: $\theta_0 = 0, ..., \theta_{k-1} = 0, \theta_k = 1, \theta_{k+1} = 0, ...$

$$\gamma_{i} = \alpha \gamma_{i+1} \text{ for } i = 0, 1, 2, ..., k - 1,$$

$$\gamma_{k+1} = (1/\alpha) \gamma_{k} - \delta / \alpha \text{ for } i = k,$$

$$\gamma_{i+1} = (1/\alpha) \gamma_{i} \text{ for } i = k+1, k+2, ...$$

$$\Rightarrow \gamma_{k+1} = 0$$

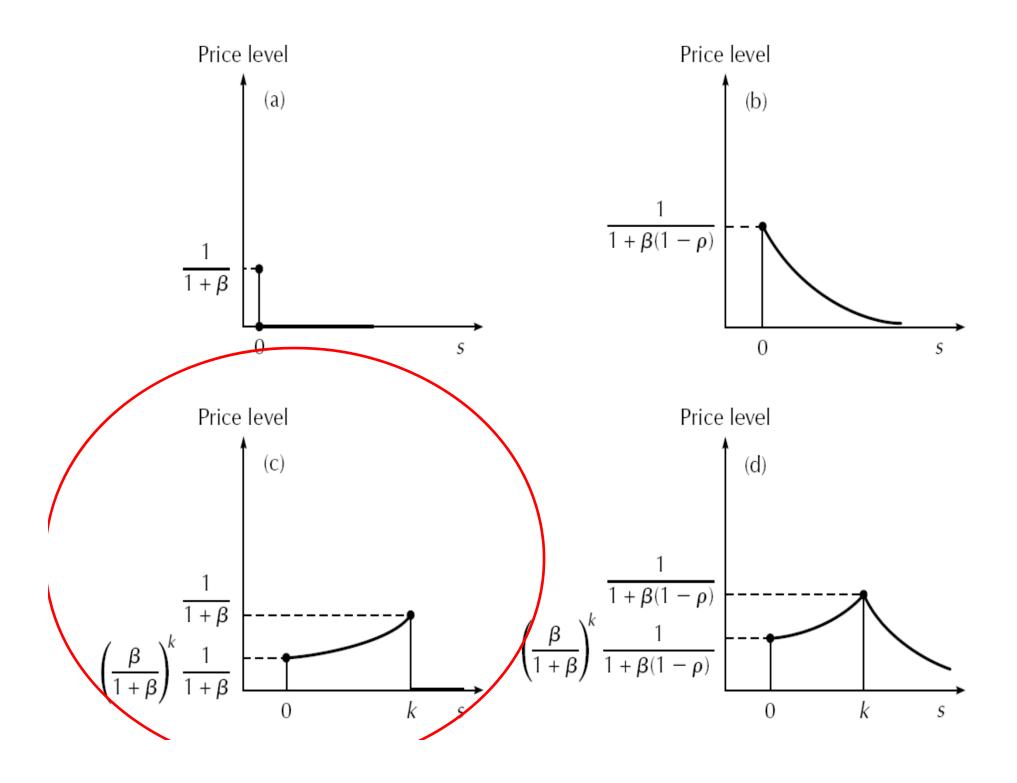
$$\Rightarrow \gamma_{k} = \delta$$

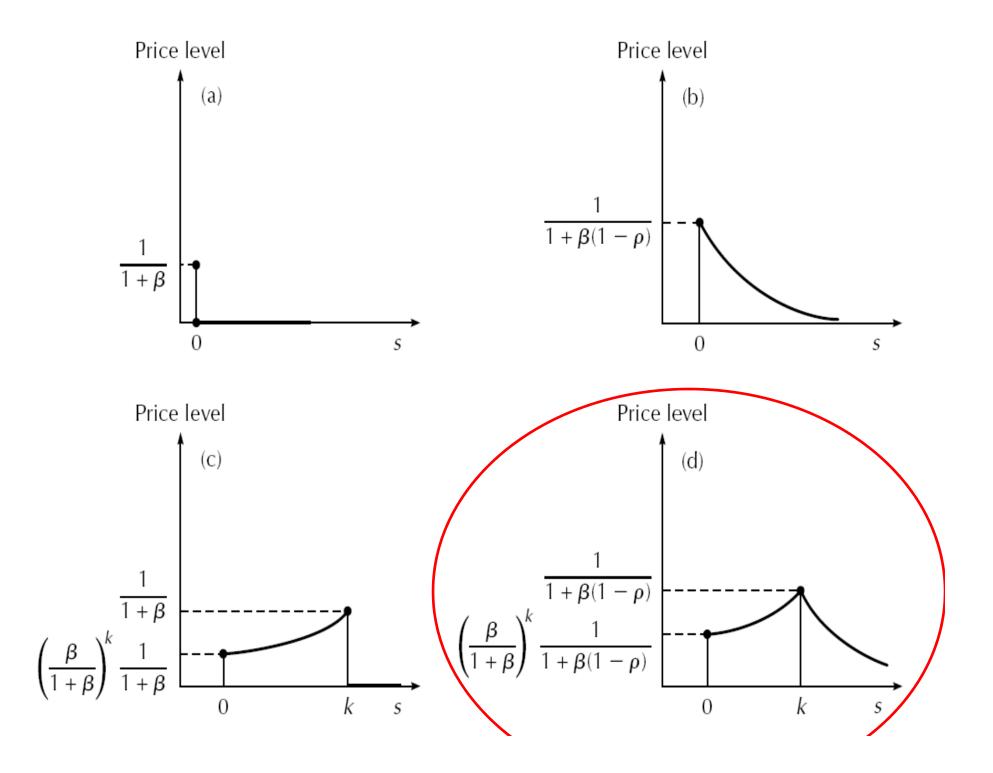
$$\gamma_{k-1} = \alpha \delta$$

$$\gamma_{k-2} = \alpha^{2} \delta$$

. . .

$$\gamma_0 = \alpha^k \delta = \left(\frac{\beta}{1+\beta}\right)^k \left(\frac{1}{1+\beta}\right)$$





Note two different ways the same mathematics is used

- To find a stochastic process for the endogenous variable y_t in terms of the stochastic process ε_t
 - Or for p_t in terms of the money supply process or "policy rule"
- To find a path for the endogenous variables for various "thought experiments" about exogenous variables.
 - What happens to the price level under different assumptions about money supply?

Model:

 $y_{t} = \alpha E_{t} y_{t+1} + \delta u_{t}$ $u_{t} = \theta_{0} \varepsilon_{t} + \theta_{1} \varepsilon_{t-1} + \theta_{2} \varepsilon_{t-2} + \dots$ where $E \varepsilon_{t} = 0, E \varepsilon_{t}^{2} = \sigma^{2}, E \varepsilon_{t} \varepsilon_{s} = 0$ for $t \neq s$

Derivation the of equation on slide 5

and where E_t is the conditional expectations operator based on information through period t. That is, expectations are assumed to be "rational expectations."

We want to solve the model, or in other words find a stochastic process for y_t which satisfies the model. We use the method of undetermined coefficients which leads to a deterministic difference equation which can then be solved by standard methods. The solution will have the following linear from :

 $\mathbf{y}_{\mathsf{t}} = \boldsymbol{\gamma}_{0}\boldsymbol{\varepsilon}_{t} + \boldsymbol{\gamma}_{1}\boldsymbol{\varepsilon}_{t-1} + \boldsymbol{\gamma}_{2}\boldsymbol{\varepsilon}_{t-2} + \dots$

To find $E_t y_{t+1}$ we lead the above equation by one period and take conditional expectations:

$$\begin{split} \mathbf{y}_{t+1} &= \gamma_0 \varepsilon_{t+1} + \gamma_1 \varepsilon_t + \gamma_2 \varepsilon_{t-1} + \dots \\ \mathbf{E}_t \mathbf{y}_{t+1} &= \gamma_0 E_t \varepsilon_{t+1} + \gamma_1 E_t \varepsilon_t + \gamma_2 E_t \varepsilon_{t-1} + \dots \\ &= \gamma_1 \varepsilon_t + \gamma_2 \varepsilon_{t-1} + \dots \text{ (because } \varepsilon \text{ has zero mean and is uncorrelated).} \\ \text{Substitution into the model gives :} \end{split}$$

 $\gamma_0 \varepsilon_t + \gamma_1 \varepsilon_{t-1} + \gamma_2 \varepsilon_{t-2} + \dots = \alpha(\gamma_1 \varepsilon_t + \gamma_2 \varepsilon_{t-1} + \dots) + \theta_0 \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$ Equatings coefficients gives

 $\gamma_0 = \alpha \gamma_1 + \theta_0 \text{ (coefficients on } \varepsilon_t\text{)}$

 $\gamma_1 = \alpha \gamma_2 + \theta_1 \text{ (coefficients on } \varepsilon_{t-1} \text{)}$

 $\gamma_s = \alpha \gamma_{s+1} + \theta_s$ (coefficients on ε_{t-s})

which is the deterministic difference equation we solved in class. (Slide 5)